Coulomb's law A46

1.	Complete the following sentences:
a)	The smaller the distance between two charged particles is, the
b)	The smaller the charges of two charged particles are, the
2.	Given are two objects of charge q_1 and q_2 , whose centers are separated by the distance r . Complete the following sentences:
a)	If q_1 is tripled, without changing q_2 and r , the electrical force between the charges changes by the factor
b)	If both charges q_1 and q_2 are divided by two, without changing r , the electrical force between them changes by the factor
c)	If r is multiplied by three, without changing q_1 and q_2 , the electrical force between the charges changes by the factor
d)	If r is divided by four, without changing q_1 and q_2 , the electrical force between the charges changes by the factor
3.	The distance between two protons in the atomic nucleus amounts to about $2.0 \cdot 10^{-15}$ m. Since they are both positively charged they repel each other. What's the magnitude of the Coulomb force between them?
	<i>Information</i> : Atomic nuclei don't fall apart, because they are being held together by the nuclear force which acts between nucleons. The nuclear force is larger than the electric repulsion, but only acts at very short distances, within the atomic nucleus.
4.	Two equal point charges are separated by a distance of r = 2.5 cm and repel each other with the force F = 0.046 N. What is the magnitude of their charges Q ?
5. a) b)	Two tiny metal spheres of the same size carry charges of $+3.0 \cdot 10^{-8}$ C and $-2.0 \cdot 10^{-8}$ C respectively. The attractive force between them amounts to 7.8 mN. What's the distance between the two little spheres? The two spheres shortly touch, are separated again, and then placed at the same distance as before. What is the magnitude of the force which acts between them now?
6.	difficult Two point charges $Q_1 = + Q$ und $Q_2 = + 4Q$ are separated by the distance r . A third small charge Q_3 shall be placed on the straight line which runs through the charges Q_1 and Q_2 ,

in such a way that it will be at rest (at equilibrium).

Where is this point of equilibrium?

 $m_{\rm p}$ = 1.67 · 10⁻²⁷ kg proton mass $m_{\rm e} = 9.11 \cdot 10^{-31} \, \rm kg$ electron mass $e = 1.602 \cdot 10^{-19} \text{ C}$ elementary charge $\mathcal{E}_0 = 8.8542 \cdot 10^{-12} \frac{\text{C}^2}{\text{N} \cdot \text{m}^2}$ $G = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$ vacuum permittivity

gravitational constant

Solutions:

b) 3.3 · 10⁻⁴ N

6. at the distance $\frac{r}{3}$ from Q₁ (between the charges Q₁ and Q₂)

^{3. 58} N 4. 5.65 · 10⁻⁸ C 5. a) 2.6 cm