Rechnen mit gerundeten oder gemessenen Zahlen

Signifikante Ziffern (auch: wesentliche, verlässliche oder zuverlässige Ziffern)

Die Genauigkeit einer Zahl erkennt man an der Anzahl signifikanter Ziffern, die sie besitzt: je mehr signifikante Ziffern sie hat, desto genauer ist sie.

Der Wert 2.0 m wurde gerundet. Er könnte also von 1.95 m aufgerundet worden sein oder

von 2.04 m abgerundet worden sein (er liegt im Bereich von ca. ± 5 cm).

Die Angabe 2.00 m ist viel genauer; dieser Wert könnte nämlich von 1.995 m aufgerundet worden sein, oder von 2.004 m abgerundet worden sein (im Bereich von ca. ± 5 mm).

Achtung: ➤ Vorangestellte Nullen gelten nicht als signifikante Ziffern!

Nullen, die hinter einer Ziffer, die nicht null ist, stehen, sind signifikant

> Bei Zahlen ohne Nachkommastellen ist die Situation bei hintenangestellten Nullen unklar

32.24 Beispiele: vier signifikante Ziffern

0.03 eine signifikante Ziffer 6.02070 sechs signifikante Ziffern

800 eine, zwei oder drei signifikante Ziffern, je nachdem man auf

Hunderter, Zehner oder Einer genau gerundet hat

Rechnen mit gerundeten Zahlen

Wenn man mit gerundeten oder gemessenen Zahlenangaben rechnet, dann kann das Resultat nicht genauer sein als der ungenauste Ausgangswert.

Mulitplikation und Division:

Das Resultat besitzt nur so viele signifikante Ziffern wie diejenige Angabe mit der kleinsten Anzahl signifikanter Ziffern.

 $v = \frac{s}{t} = \frac{57.304 \text{ m}}{1.8 \text{ s}} = ?$ Beispiel:

57.304 m hat fünf signifikante Ziffern, 1.8 s hat zwei signifikante Ziffern.

⇒ Das Resultat besitzt zwei signifikante Ziffern: $v = \frac{s}{t} = \frac{57.304 \text{ m}}{1.8 \text{ s}} = 31.835555 \frac{\text{m}}{\text{s}} = 32 \frac{\text{m}}{\text{s}}$

Addition und Subtraktion:

Das Resultat besitzt nur so viele Dezimalstellen wie die Angabe mit den wenigsten Dezimalstellen.

 $m = m_1 + m_2 + m_2 = 7.06 \text{ kg} + 6.0520 \text{ kg} + 11.8 \text{ kg} = ?$ Beispiel:

7.06 kg hat zwei Dezimalstellen, 6.0520 kg hat vier Dezimalstellen, 11.8 kg hat eine

Dezimalstelle.

⇒ Das Resultat besitzt eine Dezimalstelle:

7.06 kg + 6.0520 kg + 11.8 kg = 24.912 kg = 24.9 kg

Wissenschaftliche Schreibweise

Zahlen kann man als Produkt einer Dezimalzahl mit einer Zehnerpotenz darstellen. Üblich ist die Darstellung mit nur genau einer Ziffer ≠ 0, also verschieden von Null, vor dem Komma.

 $378509 = 37850.9 \cdot 10^{1} = 3785.09 \cdot 10^{2} = 378.509 \cdot 10^{3} = 37.8509 \cdot 10^{4} = 3.78509 \cdot 10^{5}$ Beispiele: $0.0003750 = 0.003750 \cdot 10^{-1} = 0.03750 \cdot 10^{-2} = 0.3750 \cdot 10^{-3} = 3.750 \cdot 10^{-4}$