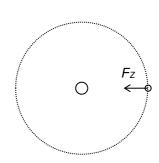

Please find all required values and constants at the back of this sheet.

- 1. Complete the following sentences:
- a) The smaller the distance between two objects is, the the gravitational force between them is.
- b) The smaller the masses of two objects are, the the gravitational force between them is.
- 2. Given are two objects of mass m_1 and m_2 , whose centers are located at the distance r. Complete the following sentences:
- a) If m_1 is tripled, without changin m_2 and r, the gravitational force changes by the factor
- b) If m_1 and m_2 are halved, without changing r, the gravitational force changes by the factor
- c) If r is tripled, without changing m_1 and m_2 , the gravitational force changes by the factor
- d) If r is divided by four, without changing m_1 and m_2 , the gravitational force changes by the factor
- 3. Two identical objects attract each other gravitationally with a force of 2.5 μ N when they are 1.25 cm apart. Calculate their individual masses.
- 4. The mass of a planet or the moon can be calculated from the acceleration of gravity at its surface and its radius. The force of gravity $F_G = m_{\text{object}} \cdot g$ is the attractive force between the moon and the object:

$$F_G = m_{\text{object}} \cdot g = G \cdot \frac{m_{\text{object}} \cdot m_{\text{moon}}}{r_{\text{moon}}^2}$$



Solve the above equation for m_{moon} . Calculate the moon's mass from the gravitational constant G, the moon's radius r_{moon} and the acceleration of free fall g on the moon.

- 5. Calculate the acceleration of gravity *g* at mercury's surface from its radius and mass.
- 6. Calculate the acceleration of free fall *g*
- a) at 6.4 km above the earth's surface
- b) at 6400 km above the earth's surface

- 7. If you doubled the mass and tripled the radius of a planet, by what factor would g at its surface change?
- 8. The sun's mass can be calculated from the distance between the sun and a planet and the planet's orbital period: The gravitational force acts as centripetal force $F_Z = m \cdot a_Z$, which holds the planet in the sun's orbit:

$$F_{\rm Z} = m_{\rm planet} \cdot a_{\rm Z} = m_{\rm planet} \cdot \omega^2 \cdot r_{\rm planet-sun} = G \cdot \frac{m_{\rm planet} \cdot m_{\rm sun}}{r_{\rm planet-sun}^2}$$

Solve the above equation for the mass of the sun and calculate the sun's mass from Mercury's orbital period and distance from the sun.

- 9. A geosynchroneous satellite is one that stays above the same point on the Earth.
- a) Why is this possible only if the satellite stays at a point above the equator?
- b) What is the orbital period of such a satellite?
- c) What is the height above the Earth's surface at which such a satellite must orbit?

Table:

gravitational constant

acceleration of gravity on the moon

Moon's radius Mercury's mass Mercury's radius

Mercury's distance from the sun

Mercury's orbital period

Earth's radius Earth's mass

 $G = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$

 $g = 1.62 \frac{\text{m}}{\text{s}^2}$

 $r_{\text{moon}} = 1'737 \text{ km}$

 $m_{\text{mercury}} = 3.29 \cdot 10^{23} \text{ kg}$

 $r_{\text{mercury}} = 2'440 \text{ km}$

 $r_{\text{mercury-sun}} = 5.79 \cdot 10^{10} \text{ m}$

 $T_{\text{mercury}} = 87.97 \text{ d}$

 $r_{\text{earth}} = 6'371 \text{ km}$

 $m_{\text{earth}} = 5.97 \cdot 10^{24} \text{ kg}$

solutions:

3. 2.42 kg

4. 7.32 · 10²² kg

5. 3.7 $\frac{m}{s^2}$

6. a) 9.8 $\frac{m}{s^2}$

b) 2.4 $\frac{m}{a^2}$

7. 0.22

8. 1.99 · 10³⁰ kg

9. b) 24 h

c) 36'000 km