

- 1. Convert the following angles:
- a) from degrees (°) to radians (rad): 360° 90° 30° 5.93°
- b) from radians (rad) to degrees (°): $2 \pi \frac{\pi}{4} \frac{3\pi}{5}$ 5.93
- 2. A merry-go-round is executing a uniform circular motion. Where is the linear speed greater: closer to the center or father away from it? Give reasons for your answer.
- 3. The largest railway station clock of Switzerland is in Aarau. The second hand on the clock is 2.2 m long.
- a) How long does one entire revolution of the clock's second hand take?
- b) What is the distance covered by the second hand's tip during one entire revolution?
- c) Determine the linear speed of the second hand's tip.
- d) Determine the angle covered by the second hand during 15 seconds (in radians as well as in degrees).
- e) What is the angular speed of the second hand?
- 4. A vehicle runs on wheels of two different sizes (see picture).
- a) Is the linear speed on the outside of the wheels the same? If no, where is it greater?
- b) Do both wheels rotate at the same angular speed? If no, where is it greater?
- c) Do both wheels rotate at the same period? If no, where is it greater?
- d) Do both wheels rotate at the same frequency? If no, where is it greater?

- 5. The radius of a car's tires is 28.0 cm, while the distance of the valve from the tire's center is 15.0 cm. The car is travelling at 100.0 $\frac{\text{km}}{\text{h}}$.
- a) What is the linear speed of a point on the outside of the tire (where it touches the road)?
- b) What is the angular speed of the tire?
- c) What is the frequency of the tire?
- d) How long do ten revolutions of the tire take?
- e) What is the linear speed of the valve?
- 6. The Earth orbits the Sun along an almost circular path of radius 1.5 · 10¹¹ m (150 million kilometers).
 - Determine the linear speed of the Earth.
- 7. The Earth (radius: 6378 km) rotates about its axis once every 24 hours.
- a) Calculate the Earth's angular speed.
- b) Determine the linear speed of a point on the equator.
- 8. The tip of the minute hand on a clock moves at $v = 1.5 \frac{mm}{s}$. How long is the clock's minute hand?

- 9. Complete the following sentences (using a quarter / half / the same / twice / four times):
- a) In order to keep an object of twice the mass moving along a circular path (without changing the radius and angular speed), the centripetal force is required.
- b) In order to keep an object moving along a circular path at twice the angular speed (without changing the radius and mass), the centripetal force is required.
- c) In order to keep an object moving along a circular path at twice the distance from the center (without changing the angular speed and mass), the centripetal force is required.
- 10. A person (m = 75 kg) is at the equator (Earth's radius: 6378 km).
- a) How much centripetal force is needed for the person to move on a circular path about the Earth's center?
- b) What force provides the centripetal force (that is, what force pulls the person towards the Earth's center)?
- 11. A small rock (*m* = 200 g) is whirled about on a string of 50.0 cm length in a horizontal circular path. The maximum centripetal force that the string holds before it rips is 100.0 N. What is the maximum frequency?
- 12. Someone swings a bucket filled with water (m = 4.5 kg) along a vertical circular path of radius 1.2 m (see picture). The linear speed is constant at 3.5 $\frac{\text{m}}{\text{s}}$.
- a) Does the water stay in the bucket at its highest point? Give reasons for your answer.
- b) Calculate the force that the girl's hand exerts on the bucket at its highest and at its lowest point.

solutions:

- 1. a) 6.28
- $\frac{\pi}{6}$ = 0.52
- 0.103

- b) 360°
- 108°
- 340°
- d) $\frac{\pi}{2}$ = 90 ° e) 0.105 s⁻¹

- 3. a) 60 s a) 27.8 $\frac{m}{s}$ 5.
- b) 14 m
- c) 0.23 🚆 c) 15.8 mal
- d) 0.63 s e) 14.9 $\frac{m}{s}$

- $107 \cdot 10^3 \frac{\text{km}}{\text{L}}$
- a) $72.7 \cdot 10^{-6} \text{ s}^{-1}$ b) 1'670 $\frac{\text{km}}{\text{h}}$ 7.

b) 99.2 s⁻¹

- 8. 86 cm
- 10. a) 2.5 N
- 11. 5.03 Hz
- 12. b) above: 1.8 N, below: 90 N