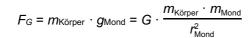
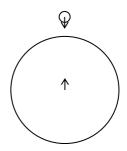
Hinweis: Alle benötigten Tabellenwerte befinden sich auf der Rückseite dieses Blattes.

- 1. Vervollständige die folgenden Sätze:
- a) Je kleiner der Abstand zwischen zwei Körpern ist, desto ist die Gravitationskraft zwischen ihnen.
- b) Je kleiner die Massen zweier Körper sind, desto ist die Gravitationskraft zwischen ihnen.
- 2. Wir betrachten zwei Massen m_1 und m_2 , deren Mittelpunkte sich im Abstand r voneinander befinden.

Vervollständige die folgenden Sätze:

- a) Wenn man m_1 verdreifacht, ohne m_2 und r zu verändern, so wird die Gravitationskraft so gross.
- b) Wenn man sowohl m_1 als auch m_2 halbiert, ohne r zu verändern, so wird die Gravitationskraft so gross.
- c) Wenn man r verdreifacht, ohne m_1 und m_2 zu verändern, so wird die Gravitationskraft so gross.
- d) Wenn man r durch vier teilt, ohne m_1 und m_2 zu verändern, so wird die Gravitationskraftso gross.
- 3. Zwei identische Körper sind 1.25 cm voneinander entfernt und ziehen sich mit einer Kraft von 2.5 μ N an. Berechne die Masse eines einzelnen Körpers.
- 4. Die Masse eines Himmelskörpers (z.B. des Mondes) kann aus dem Radius und der Fallbeschleunigung, die ein Körper an seiner Oberfläche erfährt, berechnet werden: Die Gewichtskraft $F_G = m_{\text{Körper}} \cdot g_{\text{Mond}}$, die ein Körper an der Mondoberfläche erfährt, ist die Gravitationskraft, die zwischen dem Körper und dem Mond wirkt:



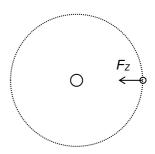


Löse die Gleichung nach m_{Mond} auf. Berechne die Masse des Mondes aus der Fallbeschleunigung g_{Mond} , der Gravitationskonstanten G und dem Mondradius r_{Mond} .

- 5. Berechne die Fallbeschleunigung auf der Oberfläche von Merkur aus der Masse und dem Radius.
- 6. Berechne die Fallbeschleunigung
- a) in 6.4 km Höhe über der Erdoberfläche
- b) in 6'400 km Höhe über der Erdoberfläche

- 7. Wenn man die Masse eines Planeten verdoppelt und seinen Radius verdreifacht, um welche Faktor ändert sich dann die Fallbeschleunigung an der Oberfläche?
- 8. Die Masse der Sonne lässt sich aus der Umlaufdauer eines Planeten um die Sonne sowie dem Abstand zwischen dem Planeten und der Sonne berechnen. Die Zentripetalkraft $F_Z = m \cdot a_Z$, die den Planeten auf seiner Umlaufbahn festhält, ist die Gravitationskraft:

$$F_Z = m_{\text{Planet}} \cdot a_Z = m_{\text{Planet}} \cdot \omega^2 \cdot r_{\text{Planet-Sonne}} = G \cdot \frac{m_{\text{Planet}} \cdot m_{\text{Sonne}}}{r_{\text{Planet-Sonne}}^2}$$



Löse die Gleichung nach der Masse der Sonne auf. Berechne die Masse der Sonne aus der Umlaufdauer von Merkur und seinem Abstand von der Sonne.

- 9. Ein geostationärer Satellit umläuft die Erde so, dass er bezüglich der Erdoberfläche immer dieselbe Position besitzt. Wichtig ist dies z. B. bei Fernsehsatelliten, die Satellitenschüsseln können dann fest auf einen Satelliten ausgerichtet werden.
- a) Warum muss die Umlaufbahn eines solchen Satelliten in der Äquatorebene liegen?
- b) Wie gross ist die Umlaufzeit dieser Satelliten?
- c) In welcher Höhe über dem Äquator umkreist dieser Satellit die Erde?

Tabelle:

Gravitationskonstante

Fallbeschleunigung auf dem Mond

Radius des Mondes Masse des Merkur Radius des Merkur Abstand Mittelpunkte Sonne-Merkur

Umlaufzeit des Merkur um die Sonne Radius der Erde

Masse der Erde

$$G = 6.67 \cdot 10^{-11} \frac{\text{N} \cdot \text{m}^2}{\text{kg}^2}$$

$$g = 1.62 \frac{\text{m}}{\text{s}^2}$$

$$r_{\text{Mond}} = 1'737 \text{ km}$$

$$m_{\text{Merkur}} = 3.29 \cdot 10^{23} \text{ kg}$$

$$r_{\text{Merkur}} = 2'440 \text{ km}$$

$$r_{\text{Sonne-Merkur}} = 5.79 \cdot 10^{10} \text{ m}$$

 $T_{Merkur} = 87.97 d$

$$r_{\rm Erde} = 6'371 \, \rm km$$

$$m_{\rm Erde} = 5.97 \cdot 10^{24} \text{ kg}$$

5. 3.7
$$\frac{m}{s^2}$$

6. a) 9.8
$$\frac{m}{s^2}$$