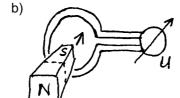
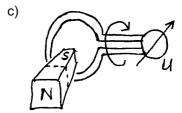
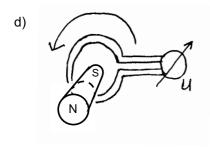
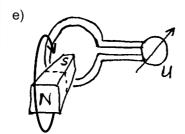
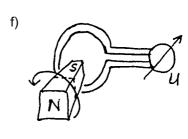

1. Wie gross ist jeweils der magnetische Fluss durch die Fläche der Leiterschleife? (B = 0.34 T)

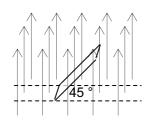







- 2. Der magnetische Fluss durch eine Leiterschleife (*A* = 76 cm²) beträgt 2.53 ·10⁻⁵ Tm². (Die magnetischen Feldlinien gehen senkrecht durch die Fläche *A*.)
 Wie gross ist die Feldstärke des Magnetfeldes, in dem sie sich befindet?
- 3. In welchen der gezeichneten Fälle wird in der Leiterschleife eine Spannung induziert?





- 4. Eine Leiterschleife ($A = 4.5 \text{ cm}^2$) befindet sich in einem homogenen Magnetfeld (B = 66.5 mT), so dass die magnetischen Feldlinien senkrecht durch die Fläche gehen.
- a) Wie gross ist der Betrag der induzierten Spannung, wenn die Leiterschleife innerhalb von 0.22 s auf 2.5 cm² zusammengedrückt wird?
- b) Wie gross ist der Betrag der induzierten Spannung, wenn das Magnetfeld innerhalb von 20 ms ausgeschaltet wird?
- Hier siehst du eine quadratische Leiterschleife mit einer Seitenlänge von 37.5 cm. Sie ist um 45.0 ° geneigt und befindet sich in einem Magnetfeld der Stärke 25.0 mT.

Berechne den magnetischen Fluss durch die Leiterschleife.

- 6. Eine lange schlanke Spule (ℓ = 55 cm) besitzt 1200 Windungen. Die Stromstärke steigt innerhalb von 0.12 s von 1.0 A auf 5.0 A an. Im Innern dieser Spule befindet sich ein quadratischer Drahtrahmen der Seitenlänge 2.2 cm mit 25 Windungen.
- a) Berechne die Stärke des Magnetfeldes am Anfang und am Ende.
- b) Berechne den magnetischen Fluss durch die Fläche des Drahtrahmens am Anfang und am Ende.
- c) Wie gross ist der Betrag der induzierten Spannung?
- 7. Hier siehst du den zeitlichen Verlauf des magnetischen Flusses durch eine Leiterschleife in einem Diagramm dargestellt.

Gib an, wie gross jeweils die induzierte Spannung ist.

Lösungen:

1. a) $3.3 \cdot 10^{-3} \text{ Tm}^2$

b) 1.9 · 10⁻³ Tm²

c) 0

2. 3.3 mT

4. a) 6.0 · 10⁻⁵ V

b) 1.5 mV

5. 2.49 · 10⁻³ Tm²

6. a) 2.7 mT und 14 mT

b) $1.3 \cdot 10^{-6} \text{ Tm}^2 \text{ und } 6.6 \cdot 10^{-6} \text{ Tm}^2$ c) 1.1 mV

7. $U_1 = 0$, $U_2 = -0.75$ mV, $U_3 = 0$, $U_4 = 1.5$ mV, $U_5 = 0$, $U_6 = -3.0$ mV, $U_7 = -1.3$ mV, $U_8 = 0$, $U_9 = 3.5$ mV, $U_{10} = -0.50$ mV, $U_{11} = 0$