1. $I_1 = 0.50 \text{ A}$ (Die Gesamtstromstärke ist auf beiden Seiten gleich gross)

 I_2 = 0.50 A - 0.20 A = $\underline{0.30 \text{ A}}$ (In der Parallelschaltung teilt sich die Gesamtstromstärke bei der Verzweigung auf)

 $I_3 = I_2 = \underline{0.30 \text{ A}}$ (In der Serieschaltung ist die Teilstromstärke im gleichen Zweig überall gleich gross)

 $I_4 = \underline{0.20 \text{ A}}$ (In der Serieschaltung ist die Teilstromstärke im gleichen Zweig überall gleich gross)

 $U_3 = U_0 = \underline{6.0 \text{ V}} = U_1 + 4.5 \text{ V}$ (In der Parallelschaltung ist die Spannung in allen Zweigen gleich gross)

 $U_1 + 4.5 \text{ V} = 6.0 \text{ V} \Rightarrow U_1 = 1.5 \text{ V}$ (In der Serieschaltung teilt sich die Spannung auf)

$$R_1 = \frac{U_1}{I_2} = \frac{1.5 \text{ V}}{0.30 \text{ A}} = \underline{5.0 \Omega}$$
 $R_2 = \frac{U_2}{I_2} = \frac{4.5 \text{ V}}{0.30 \text{ A}} = \underline{15 \Omega}$ $R_3 = \frac{U_3}{I_4} = \frac{6.0 \text{ V}}{0.20 \text{ A}} = \underline{30 \Omega}$

- 2. a) Serieschaltung: Die Strömstärke ist überall gleich gross: 78 mA
 - b) Serieschaltung: Die Spannung teilt sich auf (weil alle Lämpchen gleich sind, verteilt sie sich gleichmässig auf alle drei Lämpchen): $U_1 = U_2 = U_3 = \frac{U_{\text{gesamt}}}{3} = \frac{4.5 \text{ V}}{3} = \frac{1.5 \text{ V}}{3}$
- 3. a) Parallelschaltung: Die Stromstärke teilt sich auf (weil alle Lämpchen gleich sind, verteilt sie sich gleichmässig auf alle drei Lämpchen): $I_1 = I_2 = I_3 = \frac{I_{\text{gesamt}}}{3} = \frac{78 \text{ mA}}{3} = \frac{26 \text{ mA}}{3}$
 - b) Parallelschaltung: Die Spannung ist überall gleich gross: 4.5 V
- 4. $I_1 = 0.24$ A (gleiche Stromstärke im gleichen Zweig vor und nach dem Lämpchen)

 $I_3 = 0.4$ A (gleiche Gesamtstromstärke)

 $I_2 = I_3 - I_1 = 0.4 \text{ A} - 0.24 \text{ A} = 0.16 \text{ A}$ (Stromstärke teilt sich auf in der Parallelschaltung)

$$U_3 = R_3 \cdot I_3 = 12 \Omega \cdot 0.4 A = 4.8 V$$

 $U_1 = U_0 - U_3 = 6 \text{ V} - 4.8 \text{ V} = 1.2 \text{ V}$ (Spannung teilt sich auf in der Serieschaltung)

 $U_2 = U_1 = 1.2 \text{ V}$ (gleiche Spannung in der Parallelschaltung)

$$R_1 = \frac{U_1}{I_1} = \frac{1.2 \text{ V}}{0.24 \text{ A}} = 5 \Omega$$

$$R_2 = \frac{U_2}{I_2} = \frac{1.2 \text{ V}}{0.16 \text{ A}} = 7.5 \Omega$$

$$P_1 = U_1 \cdot I_1 = 1.2 \text{ V} \cdot 0.24 \text{ A} = 0.288 \text{ W}$$

$$P_2 = U_2 \cdot I_2 = 1.2 \text{ V} \cdot 0.16 \text{ A} = 0.192 \text{ W}$$

$$P_3 = U_3 \cdot I_3 = 4.8 \text{ V} \cdot 0.4 \text{ A} = 1.92 \text{ W}$$

5. a) Am Widerstand liegt die Spannung 230 V - 12.0 V = 218 V

Durch den Widerstand und die Lampe fliesst die gleiche Stromstärke: 2.50 A

D.h.
$$R = \frac{U}{I} = \frac{218 \text{ V}}{2.50 \text{ A}} = \frac{87.2 \Omega}{1}$$

b) $P_{\text{Lämpchen}} = U_{\text{Lämpchen}} \cdot I_{\text{Lämpchen}} = 12.0 \text{ V} \cdot 2.50 \text{ A} = 30.0 \text{ W}$

fast 20mal soviel Leistung wird im Widerstand verheizt!

6. $U = R_1 \cdot I = 6.00 \Omega \cdot 0.100 A = 0.600 V$

0.100 A fliessen durch R_1 , 6.00 A fliessen insgesamt, durch R_2 fliessen also $I_2 = I_{\text{gesamt}} - I_1 = 6.00 \text{ A} - 0.100 \text{ A} = 5.90 \text{ A}$

Die Spannung ist an beiden Widerständen gleich gross (Parallelschaltung):

$$R_2 = \frac{U}{I_2} = \frac{0.600 \text{ V}}{5.90 \text{ A}} = \frac{0.102 \Omega}{1.00 \Omega}$$

7. **A:** Reine Serieschaltung. Die Widerstände werden addiert, die Teilspannungen addieren sich zur Gesamtspannung und durch jeden Widerstand fliesst derselbe Strom.

$$R_{tot} = R_1 + R_2 + R_3 + R_4 = 180 \ \Omega$$

Die Stromstärke beträgt $I = \frac{U}{R_{tot}} = \frac{24 \text{ V}}{180 \Omega} = \frac{0.133 \text{ A}}{10.133 \text{ A}}$

Daraus folgen die Teilspannungen:

$$U_1 = I \cdot R_1 = \underbrace{1.33 \, V}_{U_2 = I \cdot R_2} = \underbrace{2.66 \, V}_{U_3 = I \cdot R_3 = 6.66 \, V}_{U_4 = I \cdot R_4 = 13.3 \, V}$$

B: Reine Parallelschaltung. Deshalb

$$\frac{1}{R_{tot}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} \Rightarrow R_{tot} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)^{-1} = \left(\frac{1}{10 \Omega} + \frac{1}{20 \Omega} + \frac{1}{50 \Omega} + \frac{1}{100 \Omega}\right)^{-1}$$

Das ergibt den Gesamtwiderstand 5.55Ω .

Die Spannung ist an allen Widerständen gleich gross, nämlich 24 V.

Die Teilströme betragen
$$I_1 = \frac{U}{R_1} = \frac{24 \text{ V}}{10 \Omega} = \frac{2.4 \text{ A}}{10 \Omega}, \qquad I_2 = \frac{U}{R_2} = \frac{24 \text{ V}}{20 \Omega} = \frac{1.2 \text{ A}}{100 \Omega},$$

$$I_3 = \frac{U}{R_3} = \frac{24 \text{ V}}{50 \Omega} = \frac{0.48 \text{ A}}{100 \Omega}, \qquad I_4 = \frac{U}{R_4} = \frac{24 \text{ V}}{100 \Omega} = \frac{0.24 \text{ A}}{100 \Omega}$$

C: Kombination von Serie- und Parallelschaltung. Zuerst werden die beiden oberen Widerstände zusammengezählt R_{12} = 30 Ω und dann die beiden unteren R_{34} = 150 Ω . Jetzt verwendet man die Formel für die Parallelschaltung:

$$\frac{1}{R_{tot}} = \frac{1}{R_{12}} + \frac{1}{R_{34}} \Rightarrow R_{tot} = \frac{R_{12} \cdot R_{23}}{R_{12} + R_{34}} = \frac{30 \ \Omega \cdot 150 \ \Omega}{180 \ \Omega} = \underbrace{\frac{25 \ \Omega}{180 \ \Omega}}_{}$$

Strom im oberen Zweig: $I_{12} = \frac{U}{R_{12}} = \frac{24 \text{ V}}{30 \Omega} = \frac{0.8 \text{ A}}{====}$, und unten:

$$I_{34} = \frac{U}{R_{34}} = \frac{24 V}{150 \Omega} = \underbrace{0.16 A}_{}$$

An beiden Zweigen liegt dieselbe Spannung, da sie parallel geschaltet sind.

Jetzt können die einzelnen Spannungen wie bei A berechnet werden:

$$U_1 = I \cdot R_{12} = 8 V \quad U_2 = I \cdot R_{12} = 16 V \qquad U_3 = I \cdot R_{34} = 8 V \quad U_4 = I \cdot R_{34} = 16 V$$

D: Wieder eine Kombination aus Serie- und Parallelschaltung. Zuerst berechnet man die Parallelschaltung:

$$\frac{1}{R_{234}} = \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4} \Rightarrow R_{234} = \left(\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}\right)^{-1} = \left(\frac{1}{20 \Omega} + \frac{1}{50 \Omega} + \frac{1}{100 \Omega}\right)^{-1} = \frac{12.5 \Omega}{R_{234}}$$

dazu kommt in Serie der Widerstand R₁, also

$$R_{tot} = R_1 + R_{234} = 22.5 \,\Omega$$
.

Der Gesamtstrom beträgt $I_{tot} = \frac{U}{R_{tot}} = \frac{24 V}{22.5 \Omega} = \frac{1.066 A}{20.000}$

Somit liegt am Widerstand R_1 die Spannung $U_1 = R_1 \cdot I_{tot} = \underline{10.66 \, V}$, da durch diesen

Widerstand ja der ganze Strom fliessen muss. An den drei Widerständen R_2 , R_3 , R_4 , liegt die Restspannung von $U_{234} = \underline{13.3 \text{ V}}$.

Die Teilströme durch die drei parallel geschalteten Widerstände R_2 , R_3 , R_4 berechnen sich wieder wie bei B:

$$I_{2} = \frac{U_{234}}{R_{2}} = \frac{13.3 \, V}{20 \, \Omega} = \underbrace{0.66 \, A}_{}, \qquad I_{3} = \underbrace{\frac{U_{234}}{R_{3}}}_{} = \underbrace{\frac{13.3 \, V}{50 \, \Omega}}_{} = \underbrace{\frac{0.266 \, A}{50 \, \Omega}}_{},$$

$$I_{4} = \underbrace{\frac{U_{234}}{R_{4}}}_{} = \underbrace{\frac{13.3 \, V}{100 \, \Omega}}_{} = \underbrace{\frac{0.133 \, A}{0.133 \, A}}_{}$$

8. a)
$$R ext{ (60 W - Glühbirne)} = \frac{U^2}{P} = \frac{(220 \text{ V})^2}{60 \text{ W}} = \underline{807 \Omega}$$

$$R (100 \text{ W} - \text{Glühbirne}) = \frac{U^2}{P} = \frac{(220 \text{ V})^2}{100 \text{ W}} = \frac{484 \Omega}{100 \text{ W}}$$

$$R_{\text{gesamt}} = R_{60\text{W}} + R_{100\text{W}} = 807 \Omega + 484 \Omega = 1291 \Omega$$

b)
$$I = \frac{U}{R} = \frac{220 \text{ V}}{1291 \Omega} = \frac{0.17 \text{ A}}{}$$

- c) U (60 W-Glühbirne) = $R_{60W} \cdot I = 807 \Omega \cdot 0.17 A = 138 V$ U (100 W-Glühbirne) = $R_{100W} \cdot I = 484 \Omega \cdot 0.17 A = 82 V$
- d) P (60 W-Glühbirne) = $U_{60W} \cdot I$ = 138 V · 0.17 A = $\underline{23.5 \text{ W}}$ P (100 W-Glühbirne) = $U_{100W} \cdot I$ = 82 V · 0.17 A = $\underline{13.9 \text{ W}}$