1. a) 
$$18 \frac{km}{h}$$
 b)  $1224 \frac{km}{h}$  c)  $1'080'000'000 \frac{km}{h} = 1.08 \cdot 10^9 \frac{km}{h}$ 

d) 1.4 
$$\frac{m}{s}$$
 e) 25  $\frac{m}{s}$ 

e) 25 
$$\frac{m}{s}$$

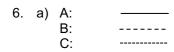
2. a) 0 bis 10 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{0}{10 \text{ s}} = 0$$

10 s bis 30 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{400 \text{ m}}{20 \text{ s}} = \frac{20 \text{ m}}{\text{s}}$$

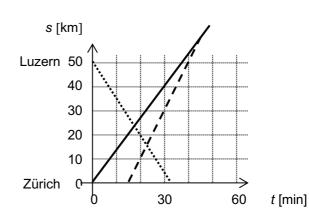
30 s bis 60 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{0}{30 \text{ s}} = \underline{0}$$

b) 0 bis 10 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{100 \text{ m}}{10 \text{ s}} = \frac{10 \text{ m}}{\text{s}}$$

10 s bis 20 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{200 \text{ m}}{10 \text{ s}} = \frac{20 \text{ m}}{\text{s}}$$


20 s bis 30 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{0}{10 \text{ s}} = \underline{0}$$

30 s bis 60 s: 
$$v = \frac{\Delta s}{\Delta t} = \frac{-200 \text{ m}}{30 \text{ s}} = \frac{-6.7 \text{ m}}{\text{s}}$$


3. 
$$t = \frac{s}{v_{\text{Licht}}} = \frac{150 \cdot 10^6 \text{ km}}{300'000 \text{ km}} = \frac{500 \text{ s}}{8} = \frac{8 \text{ min } 20 \text{ s}}{8}$$

4. 
$$s = v_{\text{Schall}} \cdot t = 1440 \frac{\text{m}}{\text{s}} \cdot 1.6 \text{ s} = 2304 \text{ m}$$
  $\Rightarrow$  2304 m : 2 = 1152 m

- a) 1 h Stillstand, 1 h Fahrt mit konstanter Geschwindigkeit (100  $\frac{km}{h}$ ), 1 h Stillstand, 1 h Fahrt mit konstanter Geschwindigkeit (100  $\frac{km}{h}$ ), 1 h Stillstand
  - b) 2 h Stillstand, 2 h Fahrt mit konstanter Geschwindigkeit (100 km/h in Gegenrichtung), 1 h Stillstand
  - c) Nach 3 h, bei s = 100 km (in der MItte)

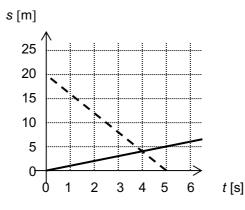


- b) nein
- c) A und C: nach 17.5 min B und C: nach 23 min



- 7. a) Anton
  - b) bei Benno nimmt sie zu, bei Christina ab

c) Benno: 
$$v = \frac{\Delta s_{\text{ges}}}{\Delta t_{\text{ges}}} = \frac{25 \text{ m}}{4 \text{ s}} = \frac{6.25 \text{ m}}{\frac{\text{s}}{\text{s}}}$$
 Christina:  $v = \frac{\Delta s_{\text{ges}}}{\Delta t_{\text{ges}}} = \frac{20 \text{ m}}{6 \text{ s}} = \frac{3.3 \text{ m}}{\frac{\text{s}}{\text{s}}}$ 


8. a) 
$$t_1 = \frac{s_1}{v_1} = \frac{300 \text{ km}}{100 \frac{\text{km}}{\text{h}}} = 3.00 \text{ h}$$
  $t_2 = \frac{s_2}{v_2} = \frac{300 \text{ km}}{140 \frac{\text{km}}{\text{h}}} = 2.14 \text{ h}$ 

$$rac{v}{v} = rac{s_{\text{gesamt}}}{t_{\text{gesamt}}} = rac{600 \text{ km}}{5.14 \text{ h}} = rac{117 \text{ km}}{\text{h}}$$

b) 
$$s_1 = v_1 \cdot t_1 = 100 \frac{\text{km}}{\text{h}} \cdot 2.5 \text{ h} = 250 \text{ km}$$
  $s_2 = v_2 \cdot t_2 = 140 \frac{\text{km}}{\text{h}} \cdot 2.5 \text{ h} = 350 \text{ km}$ 

$$\frac{-}{v} = \frac{s_{\text{gesamt}}}{t_{\text{gesamt}}} = \frac{600 \text{ km}}{5 \text{ h}} = \frac{120 \text{ km}}{\text{h}} \Rightarrow \underline{\underline{\text{ia}}}$$

9. Diagramm:



## Rechnung:

Fussgänger:  $s_{Fuss} = v_{Fuss} \cdot t_{Fuss}$ 

Velofahrer:  $s_{\text{Velo}} = s_0 - v_{\text{Velo}} \cdot t_{\text{Velo}}$  (bewegt sich in Gegenrichtung)

Sie treffen sich, wenn sich beide zur gleichen Zeit am gleichen Ort befinden, d.h. wenn  $s_{\text{Fuss}} = s_{\text{Velo}}$  und  $t_{\text{Fuss}} = t_{\text{Velo}}$ :

## Einsetzen ergibt:

$$v_{\text{Fuss}} \cdot t = s_0 - v_{\text{Velo}} \cdot t \implies v_{\text{Fuss}} \cdot t + v_{\text{Velo}} \cdot t = s_0 \implies t (v_{\text{Fuss}} + v_{\text{Velo}}) = s_0$$

$$t = \frac{S_0}{V_{\text{Fuss}} + V_{\text{Velo}}} = \frac{20.0 \text{ m}}{1.0 \frac{\text{m}}{\text{S}} + 4.0 \frac{\text{m}}{\text{S}}} = \underline{4.0 \text{ s}}$$

$$s = V_{\text{Fuss}} \cdot t = 1.0 \frac{\text{m}}{\text{S}} \cdot 4.0 \text{ s} = \underline{4.0 \text{ m}}$$

10. Diagramm:

s [m]

200
150
100
50
0
10 20 30 t [s]

Rechnung:

Velofahrer:  $s_{\text{Velo}} = v_{\text{Velo}} \cdot t_{\text{Velo}}$   $v_{\text{Velo}} = 6.2 \frac{\text{m}}{\text{s}}$ 

Auto:  $s_{Auto} = v_{Auto} \cdot (t_{Auto} - t_0)$   $t_0 = 20 \text{ s}, v_{Auto} = 18 \frac{\text{m}}{\text{s}}$  (startet später, zur Zeit  $t_2 = 20 \text{ s}$  befindet es sich bei  $s_2 = 0$ )

Sie treffen sich, wenn sich beide zur gleichen Zeit am gleichen Ort befinden, d.h. wenn  $s_{\text{Velo}} = s_{\text{Auto}} = s$  und  $t_{\text{Velo}} = t_{\text{Auto}} = t$ :

Einsetzen ergibt:

 $v_{\text{Velo}} \cdot t = v_{\text{Auto}} \cdot (t - t_0) \implies v_{\text{Velo}} \cdot t = v_{\text{Auto}} \cdot t - v_{\text{Auto}} \cdot t_0 \implies v_{\text{Velo}} \cdot t + v_{\text{Auto}} \cdot t_0 = v_{\text{Auto}} \cdot t$ 

 $v_{\text{Auto}} \cdot t_0 = v_{\text{Auto}} \cdot t - v_{\text{Velo}} \cdot t$   $\Rightarrow$   $v_{\text{Auto}} \cdot t_0 = t \cdot (v_{\text{Auto}} - v_{\text{Velo}})$ 

 $t = \frac{v_{\text{Auto}} \cdot t_0}{v_{\text{Auto}} - v_{\text{Velo}}} = \frac{18 \frac{\text{m}}{\text{S}} \cdot 20 \text{ s}}{18 \frac{\text{m}}{\text{S}} - 6.2 \frac{\text{m}}{\text{S}}} = \underline{30.5 \text{ s}}$  nach dem Start des Velofahrers

 $s_{Velo} = v_{Velo} \cdot t = 6.2 \frac{m}{s} \cdot 30.5 s = \underline{189 m}$ 

 $s_{Auto} = v_{Auto} \cdot (t - t_0) = 18 \frac{\text{m}}{\text{s}} \cdot (30.5 \text{ s} - 20 \text{ s}) = \underline{189 \text{ m}}$ 

( $s_{Velo}$  muss gleich gross sein wie  $s_{Auto}$  da sie sich zur Zeit t = 30.5 s treffen)