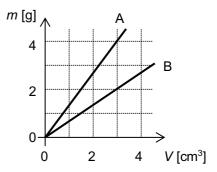

- 1. Bei welchen dieser Beispiele geht es um die Trägheit der Masse, bei welchen um die Schwere?
- a) Sonne und Erde ziehen sich an
- b) Wenn man im Auto um die Kurve fährt, wird man nach «aussen» gedrückt
- c) Ein Apfel, der reif ist, fällt zu Boden
- d) Jemand stellt einen Holzklotz auf ein Papier. Danach zieht man das Papier schnell unter dem Holzklotz hervor und der Holzklotz bleibt stehen.
- e) Ein Raumschiff, das sich weit entfernt von Sternen und anderen Objekten befindet, fliegt mit konstanter Geschwindigkeit geradeaus weiter
- 2. Wie gross ist die Gewichtskraft eines Velos von 5.70 kg Masse auf der Erde (Europa)?
- 3. Auf der Venus erfährt ein Hut die Gewichtskraft F_G = 4.0 N. Wie gross ist seine Masse?
- 4. Astronauten bestimmen Masse und Gewichtskraft eines Rucksacks: m = 10 kg, $F_G = 37$ N. Wie gross ist g und auf welchem Planeten befinden sie sich?
- 5. Das Schwimmerbecken im Hallenbad Oerlikon in Zürich ist 50.0 m lang, 21.0 m breit und die Wassertiefe beträgt 2.00 m. Wie gross ist die Masse des Wassers in kg und in t?
- 6. Hier geht es um den Stoff Messing (siehe Abb):
- a) Wie gross ist die Dichte von Messing in $\frac{g}{cm^3}$ und . kg


in
$$\frac{kg}{m^3}$$
?

- b) Wie gross ist die Masse eines 250 cm³ grossen Stücks Messing?
- c) Wie gross ist das Volumen eines 1.3 kg schweren Stücks Messing?

- verschiedenen Materialien.
 a) Welches Material hat die grössere Dichte, A oder
- b) Wie gross ist die Masse von Stoff A bei einem Volumen von 3.0 ℓ ?
- c) Zeichne die Gerade für die Dichte von Glas ins Diagramm ein.

- 8. 40.0 g Gold werden mit 20.0 g Silber zu einer Medaille zusammengeschmolzen.
- a) Welches Volumen hat die Medaille?
- b) Wie gross ist die Dichte der Medaille?
- 9. Ein Stein hat die Dichte ρ = 3.0 $\frac{g}{cm^3}$ und die Masse 63 g.
- a) Welches Volumen hat er?
- b) Wie gross ist seine Gewichtskraft auf der Erde?

Tabellen

Fallbeschleunigungen in $\frac{m}{s^2}$:

Erde (Nordpol)	9.83	Erde (Europa)	9.81	Erde (Äquator)	9.78
Mond	1.62	Venus	8.83	Mars	3.73
Jupiter	23.1	Merkur	3.7	Sonne	274
Saturn	9.0	Uranus	8.7	Neptun	11.0

Dichten in $\frac{kg}{m^3}$ (bei 20 °C und 1'013 mbar):

Luft Argon Kohlendioxid Helium Wasserstoff Methan Neon Stickstoff Sauerstoff	1.293 1.784 0.179 0.179 0.090 0.717 0.900 1.250 1.429	Azeton Alkohol Benzol Glycerin Quecksilber Methanol Olivenöl Benzin Petroleum	$0.791 \cdot 10^{3}$ $0.789 \cdot 10^{3}$ $0.879 \cdot 10^{3}$ $1.26 \cdot 10^{3}$ $13.55 \cdot 10^{3}$ $0.792 \cdot 10^{3}$ $0.92 \cdot 10^{3}$ $0.75 \cdot 10^{3}$ $0.85 \cdot 10^{3}$	Aluminium Beton Blei Kupfer Kork Gold Eis Eisen Platin	$2.70 \cdot 10^{3}$ $2.2 \cdot 10^{3}$ $11.34 \cdot 10^{3}$ $8.92 \cdot 10^{3}$ $0.30 \cdot 10^{3}$ $19.29 \cdot 10^{3}$ $0.917 \cdot 10^{3}$ $7.86 \cdot 10^{3}$ $21.5 \cdot 10^{3}$
Propan	2.010	Meerwasser	$1.03 \cdot 10^3$	Eichenholz	$0.7 \cdot 10^{3}$
Xenon	5.897	Wasser	$0.998 \cdot 10^3$	Silber	$10.5 \cdot 10^3$
				Stahl Glas	$7.9 \cdot 10^3$ $2.5 \cdot 10^3$
				Olac	

Lösungen: 2. 55.9 N 3. 0.45 kg

5. $2.09 \cdot 10^6 \text{ kg} = 2.09 \cdot 10^3 \text{ t}$

6. a) 8.3
$$\frac{g}{cm^3}$$
 und 8'300 $\frac{kg}{m^3}$

^{4. 3.7} $\frac{m}{s^2}$

b) 2.1 kg

c) 157 cm³

^{8.} a) 3.97 cm³ b) 15.1 $\frac{g}{cm^3}$ 9. a) 21 cm³ b) 0.62 N