
Beschleunigungsprinzip (Newtons zweites Prinzip)

Einleitung

Um eine Masse zu beschleunigen, braucht es eine Kraft.

Fragestellung

Welcher Zusammenhang besteht zwischen Masse, Kraft und Beschleunigung?

Vermutung

Je	die Kraft,
desto grös	sser die Beschleunigung (bei
gleicher M	lasse).

Je die Masse, desto grösser die Beschleunigung (bei gleicher Kraft).

Versuchsaufbau

Messungen

a) Gleiche Masse, verschiedene Kräfte

m = s =

F [N]		
t [s]		
$a = \frac{2s}{t^2} \left[\frac{m}{s^2} \right]$		

Wenn man die Kraft verdoppelt, sich die Beschleunigung.

Wenn man die Kraft verdreifacht, sich die Beschleunigung.

Die Beschleunigung ist zur Kraft.

b) Gleiche Kraft, verschiedene Massen

F = s =

<i>m</i> [kg]		
t [s]		
$a = \frac{2s}{t^2} \left[\frac{m}{s^2} \right]$		

Wenn man die Masse verdoppelt, sich die Beschleunigung.

Wenn man die Masse verdreifacht, sich die Beschleunigung.

Die Beschleunigung ist zur Masse.

Zusammenfassung

Beschleunigungsprinzip

Definition der Einheit der Kraft:

Eine Kraft von 1 N beschleunigt eine Masse von 1 kg mit 1 $\frac{\text{m}}{\text{s}^2}$.

Das heisst:
$$1 N = \frac{1 \text{ kg} \cdot 1 \text{ m}}{1 \text{ s}^2}$$