Mechanik

Länge – Zeit – Geschwindigkeit

Die Länge

Symbol: s (lat. spatium: der Raum, die Länge)

Einheit: m (Meter)

Frühere Definition: Ein Viertel des Erdumfangs beträgt 10'000'000 m.

Heutige Definition: Das Licht braucht im luftleeren Raum $\frac{1}{299'792'458}$ s, um 1 m

zurückzulegen.

Die Zeit

Symbol: t (lat. tempus: die Zeit)

Einheit: s (Sekunde)

Frühere Definition: 1 Sekunde ist $\frac{1}{86'400}$ Tag.

Heutige Definition: 1 Sekunde wird mit Hilfe der Schwingungsdauer der Strahlung eines

Atoms (Cäsium 133) bestimmt.

Die Geschwindigkeit

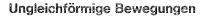
Die Geschwindigkeit gibt an, welcher Weg in einer bestimmten Zeit zurückgelegt wird. Man kann sie berechnen, wenn man weiss a) wie lang der zurückgelegte *Weg* ist und b) wie viel *Zeit* dafür gebraucht wurde.

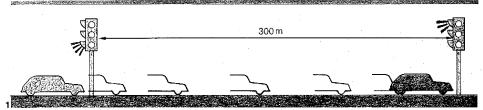
Ein Körper befindet sich zur Zeit t_1 am Ort s_1 und zur Zeit t_2 am Ort s_2 . Die Geschwindigkeit dieser Bewegung ist definiert als:

Definition: Geschwindigkeit = $\frac{\text{Weg}}{\text{Zeit}}$

 $V = \frac{\Delta s}{\Delta t}$

 $\Delta S = S_2 - S_1$ $\Delta t = t_2 - t_1$

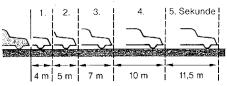

Symbol: v (franz. vitesse: Geschwindigkeit)


Einheit: $[v] = \frac{m}{s}$ oder $\frac{km}{h}$, wobei 1 $\frac{m}{s} = 3.6$ $\frac{km}{h}$

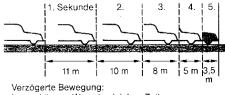
Umrechnen: Geschwindigkeit in $\frac{m}{s} \cdot 3.6 \rightarrow$ Geschwindigkeit in $\frac{km}{h}$

Geschwindigkeit in $\frac{km}{h}: \textbf{3.6} \rightarrow \text{Geschwindigkeit}$ in $\frac{m}{s}$

Gleichförmige und ungleichförmige Bewegung

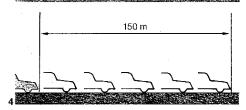


Das Auto legt die 300 m lange Strecke zwischen den Ampeln in 25 s zurück (Bild 1). Seine Durchschnittsgeschwindigkeit beträgt also:


$$v = \frac{300 \text{ m}}{25 \text{ s}} = 12 \frac{\text{m}}{\text{s}} = \frac{12 \text{ km}}{1000 \text{ s}} = \frac{12 \cdot 3600 \text{ km}}{1000 \text{ h}} = 43.2 \frac{\text{km}}{\text{h}}.$$

Dies ist aber nicht seine tatsächliche Geschwindigkeit zu verschiedenen Zeitpunkten. Diese Geschwindigkeit ändert sich nämlich ständig. Man sagt: Die Bewegung des Autos ist ungleichförmig.

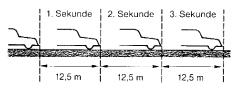
Zunächst nimmt die Geschwindigkeit des Wagens dauernd zu; er beschleunigt. Unter Beschleunigung versteht man also eine Geschwindigkeitszunahme.


Beschleunigte Bewegung: immer längere Wege in gleichen Zeiten. Dann wird die Geschwindigkeit des Wagens geringer; er *verzögert*. **Die Verzögerung (negative Beschleunigung) ist eine Geschwindigkeitsabnahme**.

immer kürzere Wege in gleichen Zeiten.

Bei ungleichförmigen Bewegungen werden verschieden lange Wege in gleichen Zeiten zurückgelegt

Gleichförmige Bewegung



Das Auto in Bild 4 braucht für 150 m 12 s. Seine Geschwindigkeit beträgt:

$$v = \frac{150 \text{ m}}{12 \text{ s}} = 12,5 \frac{\text{m}}{\text{s}} = 45 \frac{\text{km}}{\text{h}}.$$

Mit dieser Geschwindigkeit fährt das Auto ständig. Die Geschwindigkeit bleibt also gleich. Man sagt: Die Bewegung des Autos ist gleichförmig.

Während seiner Fahrt wird der Wagen weder beschleunigt noch verzögert. Er fährt immer gleich schnell (Bild 5).

Gleichförmige Bewegung: gleich lange Wege in gleichen Zeiten.

Bei gleichförmigen Bewegungen werden gleich lange Wege in gleichen Zeiten zurückgelegt

aus: Physik für die Sekundarstufe I, Cornelsen Orell Füssli, S. 52

Die gleichförmige Bewegung

Eine Bewegung ist gleichförmig, wenn die Geschwindigkeit $v = \frac{\Delta s}{\Delta t}$ konstant ist. Die Geschwindigkeit bleibt also immer gleich und ändert sich nicht.

Dann gilt

 $s = v \cdot t$