Ladung und Stromstärke

Ladung ist eine Eigenschaft der Materie. Alle Materie besteht aus Atomen, die aus Protonen (positiv geladen), Elektronen (negativ geladen) und Neutronen (elektrisch neutral) aufgebaut ist.

Eigenschaften von Ladungen			
1.	Es gibt	undund	
2.		Ladungen stossen sich ab,Ladunge	
	ziehen sic	ch an.	
3.	In einem	elektrisch neutralen Körper hat es positive wi	
	negative l	Ladung (nicht: <i>keine</i> Ladung).	
El	lektrische	e Eigenschaften der Materie	
Ni	chtleiter (Isolatoren): Keramik, Kunststoffe, Gase	
ein	igen Atome	rn sind die Elektronen fest an die Atome gebunden. Nur an der Oberfläche kann man en durch Reiben Elektronen entreissen oder hinzufügen. Der Nichtleiter wird dadurch egativ geladen.	
<u>Po</u>	larisation:	Innerhalb des Atoms können Elektronen geringfügig verschoben werden. Unter den Einfluss eines elektrischen Feldes werden in Isolatoren elektrische Dipole gebildet.	

Isolator

geladene Kugel

Elektrische Leiter: Metalle

In Leitern gibt es viele Elektronen, die nicht fest zu einem bestimmten Atom gehören. Diese Elektronen können sich zwischen den Atomrümpfen frei bewegen («Elektronengas»).

Influenz:

Unter dem Einfluss eines elektrischen Feldes werden in Leitern Elektronen verschoben, während die Atomrümpfe an ihrem Platz bleiben. Die Ladung wird getrennt.

5	Elektrisch neutrale Körper und elektrisch geladene Körper ziehen sich immer gegenseitig an.
	Grund:

Die Einheit der Ladung

Symbol: Q Einheit: C (Coulomb)

1 Elektron hat die Ladung $e = 1.602 \cdot 10^{-19}$ C. Diese Ladungsmenge 1 e ist die Elementarladung (kleinste Ladung, die es gibt).

Die Stromstärke

- Strom ist bewegte Ladung.
- Die Stromstärke ist die Ladungsmenge, die pro Zeiteinheit durch einen Leiterquerschnitt fliesst.

Symbol: I Einheit: A (Ampère)

Definition: $I = \frac{\Delta Q}{\Delta t}$ wobei $1 A = \frac{1 C}{1 s}$