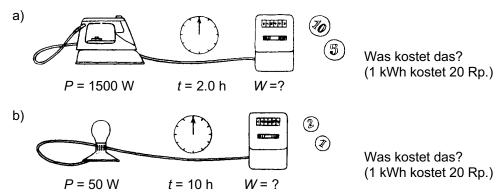

1. Berechne in jeder Abbildung die fehlende Grösse.


- 2. Auf einer Glühbirne steht die Angabe 75 W/220 V. Das bedeutet, dass sie 75 W «verbraucht», wenn sie bei 220 V (ihrer Betriebsspannung) angeschlossen wird.
- a) Wie gross ist die Stromstärke?
- b) Wie gross ist der Widerstand?
- 3. Finde eine Formel, mit der man die elektrische Leistung aus
- a) dem Widerstand und der Spannung berechnen kann
- b) dem Widerstand und der Stromstärke berechnen kann

Hinweis: Verwende:
$$P = U \cdot I$$
 und $R = \frac{U}{I}$

- 4. Ein Heizofen hat bei 220 V die Leistung 1.0 kW.
- a) Wie gross ist die Stromstärke?
- b) Wie gross ist der Widerstand?
- c) Wie gross ist die Stromstärke bei 110 V? (gleicher Widerstand)
- d) Wie gross ist die Leistung bei 110 V?
- e) Wie gross ist die Stromstärke bei 440 V? (gleicher Widerstand)
- f) Wie gross ist die Leistung bei 440 V?
- 5. Berechne jeweils die fehlenden Grössen. Schreibe immer die Formel, mit der du gerechnet hast, dazu. (richtig umgeformt!)

	Spannung	Stromstärke	Widerstand	Arbeit	Zeit	Leistung
a)		2.00 A	12.0 Ω		2.00 min	
b)	150 V	6.00 A			80.0 s	
c)	220 V			13.0 kJ	1.50 h	
d)		10.0 A	600 Ω	5.00 kJ		
e)	4.00 V			120 J		20.0 W
f)		20.0 mA			1.00 Tag	90.0 mW

6. Berechne in den Abbildungen die fehlenden Grössen (Arbeit in J und in kWh).

- 7. Durch ein Lämpchen, das an einer 4.5 V-Batterie angeschlossen ist, fliesst ein Strom der Stärke 0.20 A. Nach acht Stunden ist die Batterie «leer». Die Batterie hat 2.00 Fr. gekostet.
- a) Wie viel Ladung wurde transportiert?
- b) Wie gross ist die Leistung?
- c) Wie viel Energie hat die Batterie abgegeben?
- d) Wie teuer kommt eine kWh «aus der Batterie»?
- e) Was hätte die gleiche Energiemenge (wie in c) «aus der Steckdose» gekostet?
- 8. Wie gross ist der Wirkungsgrad einer Glühbirne, wenn sie 100.0 W elektrische Leistung aufnimmt und 5.0 W Lichtleistung abgibt?
- 9. Ein Elektromoter hat einen Wirkungsgrad von 70 %. Wie viel elektrische Energie muss er aufnehmen, wenn die Nutzenergie E_{nutz} = 460 kJ betragen soll?
- 10. Auf einer Baustelle zieht ein Kran eine 400 kg schwere Last 15 m hoch. Der Elektromotor hat einen Wirkungsgrad von 75%.
- a) Wie viel Arbeit muss verrichtet werden, um die Last zu heben?
- b) Wie gross ist die Nutzenergie?
- c) Wie viel elektrische Energie muss zugeführt werden, um die Last zu heben?
- d) Wie viel kostet das?

<u>Lösungen:</u>										
1.	a) 36 W	b) 3.0 A	c) 12 V	d) 0.45 A						
2.	a) 0.34 A	b) 645 Ω								
4.	a) 4.55 A	b) 48.4 Ω	c) 2.27 A	d) 250 W	e) 9.09 A	f) 4'000 W				
5.	a) 24.0 V, 5760 J, 48.0 W		b) 25 Ω, 72.0 kJ, 900 W		c) 10.9 mA, 20.1 kΩ, 2.41 W					
	d) 6.00 kV, 0.0833 s, 60.0 kW		e) 5.00 A, 0.800 Ω, 6.00 s		f) 4.50 V, 225 Ω, 7.78 kJ					
6.	a) 10.8 MJ = 3.0 k\	Nh, kostet 60 Rp.	b) 1.8 MJ = 0.50 kWh, kostet 10 Rp.							
7.	a) 5'760 C	b) 0.900 W	c) 25.9 kJ = 7.20 W	/h	d) 277.80 Fr.	e) 0.144 Rp.				
8.	5. %									
9.	657 kJ									
10.	a) 59 kJ	b) 59 kJ	c) 78 kJ	d) 0.43 Rp.						