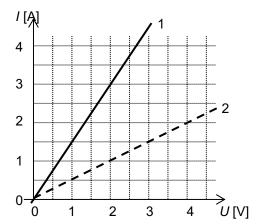
1.	Vervollständige die folgenden Sätze (mit grösser/kleiner):	
a)	Je grösser der Widerstand (bei gleicher Spannung), desto	die
b)	Je höher die Spannung (bei gleichem Widerstand) desto	die

c) Je kleiner der Widerstand (bei gleicher Spannung), desto die Stromstärke.

d) Je niedriger die Spannung (bei gleichem Widerstand) desto die Stromstärke.

2. Berechne jeweils die fehlenden Grössen. Schreibe immer die Formel, mit der du gerechnet hast, dazu. (richtig umgeformt!)


	Spannung	Stromstärke	Widerstand	Ladung	Zeit
a)		2.00 A	12.0 Ω		2.00 Minuten
b)	150 V	6.00 A			80.0 s
c)	220 V		200 Ω		5.00 s
d)		10.0 A	600 Ω	25.0 C	
e)	4.00 V			300 C	1.00 Minute
f)		20.0 mA	225 Ω	1'728 C	

3.	Hier beschreiben	sich	zwei	Stromquel	len. Erganze:
----	------------------	------	------	-----------	---------------

a)	Batterie: «Ich bin eine	.(Gleichstrom/Wechselstrom) -Quelle.
	Bei mir fliessen die Elektronen	(hin und her/immer
	in die gleiche Richtung). Mein Plus- und mein Minuspo	lc
	(bleiben so wie sie sind/werden ständig vertauscht).»	

- 4. Durch einen Widerstand fliesst bei einer Spannung von 40.0 V während 1.00 min ein Strom der Stärke 0.100 A.
- a) Wie gross ist der Widerstand?
- b) Wie viel Ladung wird transportiert?
- c) Wie gross ist die Arbeit, die die Stromquelle an der Ladung verrichtet?

- Der Widerstand eines Konstantandrahtes ist konstant. Hier siehst du ein Diagramm für den Zusammenhang zwischen Spannung und Stromstärke von zwei Konstantandrähten.
- a) Welcher Konstantandraht hat den grösseren Widerstand: 1 oder 2?
- b) Bei welcher Spannung fliesst durch Draht 1 die Stromstärke 3.0 A?
- c) Wie gross ist die Stromstärke im Draht 2 bei 13 V?
- d) Zeichne im Diagramm den Graphen für eine Konstantandraht 3 mit einem Widerstand von $R = 1.0 \Omega$ ein.

6. Jemand berührt aus Versehen zwei Leiter, zwischen denen eine Spannung von 220 V liegt. Wie stark ist der Strom durch den Körper ($R = 1.00 \text{ k}\Omega$)?

Lösungen:

2. a) 24 V, 240 C b) 25 Ω, 480 C

4. a) 400 Ω b) 6.00 C

5. b) 2.0 V c) 6.5 A

6. 0.220 A

c) 1.1 A, 5.5 C c) 240 J d) 6.0 kV, 2.5 s

e) 5.0 A, 0.80 Ω

f) 4.5 V, 1 Tag